
Similarity Search in High
Dimensions

Piotr Indyk
MIT

Definitions
•  Given: a set P of n points in Rd
•  Nearest Neighbor: for any query

q, returns a point p∈P
minimizing ||p-q||

•  r-Near Neighbor: for any query
q, returns a point p∈P s.t.

 ||p-q|| ≤ r (if it exists)

q

r

The case of d=2
•  Compute Voronoi diagram
•  Given q, perform point

location
•  Performance:

– Space: O(n)
– Query time: O(log n)

High-dimensional near(est)
neighbor: applications

•  Machine learning: nearest
neighbor rule
•  Find the closest example

with known class
•  Copy the class label

•  Near-duplicate Retrieval

?
Dimension=number of pixels

To be or not to be
…

(... , 2, …, 2, … , 1 , …, 1, …)

(... , 1, …, 4, … , 2 , …, 2, …)

(... , 6, …, 1, … , 3 , …, 6, …)

(... , 1, …, 3, … , 7 , …, 5, …)

Dimension=number of words

The case of d>2

•  Voronoi diagram has size n[d/2]
–  [Dobkin-Lipton’78]: n2^(d+1) space, f(d) log n
–  [Clarkson’88]: n[d/2](1+ε) space, f(d) log n time
–  [Meiser’93]: nO(d) space, (d+ log n)O(1) time

•  We can also perform a linear scan: O(dn)
time

•  Or parametrize by intrinsic dimension
•  In practice:

– kd-trees work “well” in “low-medium”
dimensions

Approximate Nearest Neighbor
•  c-Approximate Nearest

Neighbor: build data structure
which, for any query q
–  returns p’∈P, ||p-q|| ≤ cr,
– where r is the distance to the

nearest neighbor of q
q

r

cr

Approximate Near Neighbor
•  c-Approximate r-Near Neighbor: build data

structure which, for any query q:
–  If there is a point p∈P, ||p-q|| ≤ r
–  it returns p’∈P, ||p-q|| ≤ cr

•  Most algorithms randomized:
–  For each query q, the probability (over the

randomness used to construct the data structure)
is at least 90%

•  Reductions and variants:
–  c-Approx Nearest Neighbor reduces to c-Approx

Near Neighbor (Wednesday)
–  One can enumerate all approx near neighbors
 → solving exact near neighbor via filtering
–  Other apps: c-approximate Minimum Spanning

Tree, clustering, etc.

q

r

cr

 Approximate algorithms
•  Space/time exponential in d [Arya-Mount’93],

[Clarkson’94], [Arya-Mount-Netanyahu-Silverman-Wu’98]
[Kleinberg’97], [Har-Peled’02], ….

•  Space/time polynomial in d [Indyk-Motwani’98],
[Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98], [Gionis-Indyk-
Motwani’99], [Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04],
[Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]…

Space Time Comment Norm Ref

dn+nO(1/ε2) d * logn /ε2

(or 1)

c=1+ ε Hamm, l2 [KOR’98, IM’98]

nΩ(1/ε2) O(1) [AIP’06]

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c Hamm, l2 [IM’98], [GIM’98],[Cha’02]

ρ(c)<1/c l2 [DIIM’04]

dn * logs dnσ(c) σ(c)=O(log c/c) Hamm, l2 [Ind’01]

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c2 + o(1) l2 [AI’06]

σ(c)=O(1/c) l2 [Pan’06]

nO(1/ε2) space, d * logn /ε2 query time,

Hamming distance

Hamming distance sketches
[Kushilevitz-Ostrovsky-Rabani’98]

•  Let x,y in {0,1}d , r>1, ε>0, 0<δ<1
•  Want: sk: {0,1}d -> {0,1}t such that
 given sk(x), sk(y):

–  If H(x,y)> (1+ε)r, we report YES
–  If H(x,y)< (1-ε)r, we report NO

 with probability >1-δ
•  In fact, we test if H(sk(x),sk(y))>R for

some R
•  How low t can we get ?
•  Will see t=O(log(1/δ)/ε2) suffices

Sketch
•  Setup:

–  Choose a random set S of coordinates
•  For each i, we have Pr[i∈S]=1/r

–  Choose a random vector u in {0,1}d
•  Sketch: SumS(x) = Σi∈S xi ui mod 2
•  Estimation algorithm:

–  B= SumS(x) + SumS(y) mod 2
–  YES, if B=1
–  NO, if B=0

•  Analysis:
–  We have B=SumS(z) where z=x XOR y
–  Let D=||z||0
–  Pr[B=1] = ½ * Pr[zS≠0]

 = ½ * [1-Pr[zS=0]]
 = ½ * [1-(1-1/r)D]
–  For r large enough: (1-1/r)D ≈e-D/r, so

•  If D> (1+ε)r, then e-(1+ε) < 1/e - ε/3 and Pr>1/2(1-1/e + ε/3)
•  If D< (1-ε)r, then e-(1-ε) > 1/e + ε/3 and Pr<1/2(1-1/e - ε/3)

–  Using O(log(1/δ)/ε2) sums does the job (Chernoff bound)

Sketch is good

•  Data structure (for P, r>1, ε>0)
– Compute sk: {0,1}d -> {0,1}t , t=O(log(1/δ)/ε2)

for δ=1/nO(1)

• Sketch works (with high probability) for fixed
query q and all points p in P

– Exhaustive storage trick:
• Compute

S={u in {0,1}t: H(u,p)>R for some p in P}
• Store S (space: 2t=nO(1/ε^2))

•  Query: check whether sk(q) in S

Beyond {0,1}d : l1 norm
•  l1 norm over {0…M}d

–  Embed into Hamming space with dimension dM [Linial-
London-Rabinovich’94]

•  Compute
Unary((x1, . . . , xd)) = Unary(x1) . . . Unary(xd)

•  We have
||p-q||1 = H(Unary(p), Unary(q))

–  Need to deal with large values of M
•  l1 norm over [0…s]d

–  Round each coordinate to the nearest multiple of r ε/d
•  Introduces additive error of r ε , or multiplicative (1+ε) factor

–  Now we have M=s* d/(r ε)

Beyond {0,1}d : l1 norm ctd

•  l1 norm over Rd

– Partition Rd using a randomly shifted grid of side
length s=10r [Bern’93]

– For any two points p and q, the probability that p
and q fall into different grid cells is at most

|p1-q1|/s + |p2-q2|/s+..+|pd-qd|/s= ||p-q||1 /s
•  If ||p-q||1 ≤ r, then probability is at most 10%

– Build a separate data structure for each grid cell
– To answer a query q, use the data structure for

the cell containing q

Beyond {0,1}d : l2 norm

•  Embed l2d into l1t with t=O(d/ε2) with
distortion 1+ε [Figiel-Lindenstrauss-Milman’76]

– Use random projections
•  Or, use Johnson-Lindenstrauss lemma to

reduce the dimension to t=O(log n/ε2) and
apply exhaustive storage trick directly in l2t
[Indyk-Motwani’98]

Next two lectures

•  Wednesday: reducing nearest to near
neighbor

•  Thursday: other algorithms for near
neighbor (less space, more query time)
– Locality Sensitive Hashing

