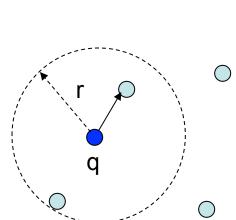
Similarity Search in High Dimensions

Piotr Indyk MIT

Definitions

- Given: a set P of n points in R^d
- Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
- r-Near Neighbor: for any query q, returns a point p∈P s.t.

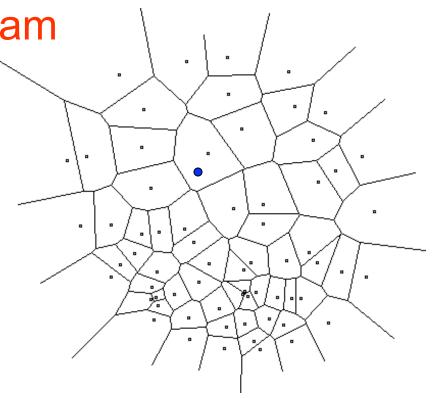


 \bigcirc

 $||p-q|| \le r$ (if it exists)

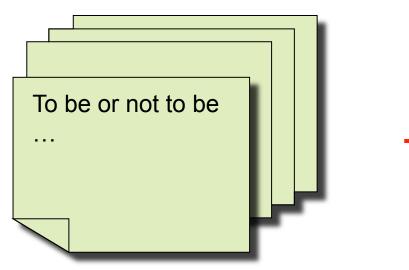
The case of d=2

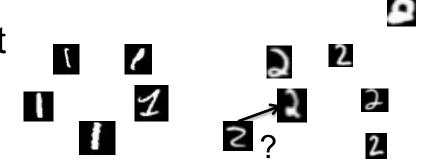
- Compute Voronoi diagram
- Given q, perform point location
- Performance:
 - Space: O(n)
 - Query time: O(log n)



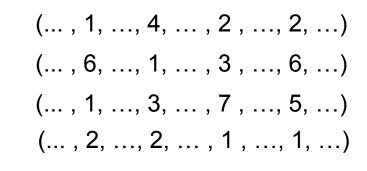
High-dimensional near(est) neighbor: applications

- Machine learning: nearest neighbor rule
 - Find the closest example with known class
 - Copy the class label
- Near-duplicate Retrieval





Dimension=number of pixels



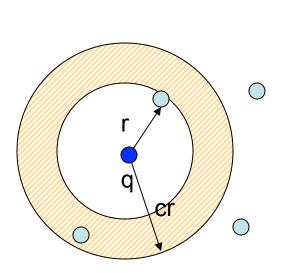
Dimension=number of words

The case of d>2

- Voronoi diagram has size n^[d/2]
 - [Dobkin-Lipton'78]: $n^{2^{(d+1)}}$ space, f(d) log n
 - [Clarkson'88]: $n^{[d/2](1+\epsilon)}$ space, f(d) log n time
 - [Meiser'93]: $n^{O(d)}$ space, (d+ log n)^{O(1)} time
- We can also perform a linear scan: O(dn) time
- Or parametrize by intrinsic dimension
- In practice:
 - kd-trees work "well" in "low-medium" dimensions

Approximate Nearest Neighbor

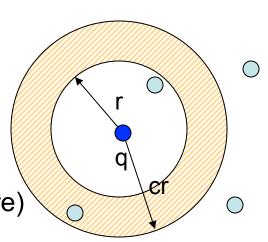
- c-Approximate Nearest Neighbor: build data structure which, for any query q
 - returns $p' \in P$, $||p-q|| \leq cr$,
 - where r is the distance to the nearest neighbor of q



 \bigcirc

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - − it returns $p' \in P$, $||p-q|| \leq cr$
- Most algorithms randomized:
 - For each query q, the probability (over the randomness used to construct the data structure) is at least 90%
- Reductions and variants:
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor (Wednesday)
 - One can enumerate all approx near neighbors
 - \rightarrow solving exact near neighbor via filtering
 - Other apps: c-approximate Minimum Spanning Tree, clustering, etc.



 \bigcirc

Approximate algorithms

- Space/time exponential in d [Arya-Mount'93], [Clarkson'94], [Arya-Mount-Netanyahu-Silverman-Wu'98] [Kleinberg'97], [Har-Peled'02],
- Space/time polynomial in d [Indyk-Motwani'98], [Kushilevitz-Ostrovsky-Rabani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

	Space	Time	Comment	Norm	Ref
	dn+n ^{O(1/ε²)}	d * logn /ε²	c=1+ ε	Hamm, I ₂	[KOR'98, IM'98]
		(or 1)			
	$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]
	dn+n ^{1+ρ(c)}	dn ^{ρ(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [GIM'98],[Cha'02]
			ρ(c)<1/c	I ₂	[DIIM'04]
	dn * logs	dn ^{σ(c)}	σ(c)=O(log c/c)	Hamm, I ₂	[Ind'01]
	dn+n ^{1+ρ(c)}	dn ^{ρ(c)}	$\rho(c)=1/c^2 + o(1)$	l ₂	[Al'06]
			σ(c)=O(1/c)	l ₂	[Pan'06]

n^{O(1/ε²)} space, d * logn /ε² query time, Hamming distance

Hamming distance sketches [Kushilevitz-Ostrovsky-Rabani'98]

- Let x,y in {0,1}^d, r>1, ε>0, 0<δ<1
- Want: sk: $\{0,1\}^d \rightarrow \{0,1\}^t$ such that given sk(x), sk(y): $- \text{ If } H(x,y) > (1+\epsilon)r$, we report YES $- \text{ If } H(x,y) < (1-\epsilon)r$, we report NO with probability >1- δ
- In fact, we test if H(sk(x),sk(y))>R for some R
- How low t can we get ?
- Will see $t=O(\log(1/\delta)/\epsilon^2)$ suffices

Sketch

- Setup: \bullet
 - Choose a random set S of coordinates
 - For each i, we have Pr[i∈S]=1/r
 - Choose a random vector u in $\{0,1\}^d$
- Sketch: $Sum_{S}(x) = \sum_{i \in S} x_{i} u_{i} \mod 2$
- Estimation algorithm:
 - B= Sum_s(x) + Sum_s(y) mod 2
 - YES, if B=1
 - NO, if B=0
- Analysis:
 - We have $B=Sum_{s}(z)$ where z=x XOR y
 - Let $D = ||z||_0$
 - $Pr[B=1] = \frac{1}{2} * Pr[z_{s}\neq 0]$

$$= \frac{1}{2} * [1-\Pr[z_S=0]]$$

= $\frac{1}{2} * [1-(1-1/r)^D]$

- For r large enough: $(1-1/r)^{D} \approx e^{-D/r}$, so
 - If D> $(1+\epsilon)r$, then $e^{-(1+\epsilon)} < 1/e \epsilon/3$ and $Pr>1/2(1-1/e + \epsilon/3)$ If D< $(1-\epsilon)r$, then $e^{-(1-\epsilon)} > 1/e + \epsilon/3$ and $Pr<1/2(1-1/e \epsilon/3)$
- Using $O(\log(1/\delta)/\epsilon^2)$ sums does the job (Chernoff bound)

Sketch is good

- Data structure (for P, r>1, ε >0)
 - Compute sk: $\{0,1\}^d \rightarrow \{0,1\}^t$, $t=O(log(1/\delta)/\epsilon^2)$ for $\delta=1/n^{O(1)}$
 - Sketch works (with high probability) for fixed query q and all points p in P
 - Exhaustive storage trick:
 - Compute

 $S=\{u \text{ in } \{0,1\}^t: H(u,p)>R \text{ for some } p \text{ in } P\}$

- Store S (space: 2^t=n^{O(1/ε^2)})
- Query: check whether sk(q) in S

Beyond $\{0,1\}^d$: I₁ norm

- I₁ norm over {0...M}^d
 - Embed into Hamming space with dimension dM [Linial-London-Rabinovich'94]
 - Compute

```
Unary((x_1, \ldots, x_d)) = Unary(x_1) \ldots Unary(x_d)
```

• We have

 $\|p-q\|_1 = H(Unary(p), Unary(q))$

- Need to deal with large values of M
- I₁ norm over [0...s]^d
 - Round each coordinate to the nearest multiple of $r \epsilon/d$
 - Introduces additive error of r ϵ , or multiplicative (1+ ϵ) factor
 - Now we have $M=s^* d/(r \epsilon)$

Beyond $\{0,1\}^d$: I₁ norm ctd

- I₁ norm over R^d
 - Partition R^d using a randomly shifted grid of side length s=10r [Bern'93]
 - For any two points p and q, the probability that p and q fall into different grid cells is at most

 $|p_1-q_1|/s + |p_2-q_2|/s+..+|p_d-q_d|/s= ||p-q||_1/s$

- If $||p-q||_1 \le r$, then probability is at most 10%
- Build a separate data structure for each grid cell
- To answer a query q, use the data structure for the cell containing q

Beyond $\{0,1\}^d$: I_2 norm

- Embed I₂^d into I₁^t with t=O(d/ε²) with distortion 1+ε [Figiel-Lindenstrauss-Milman'76]
 Use random projections
- Or, use Johnson-Lindenstrauss lemma to reduce the dimension to t=O(log n/ε²) and apply exhaustive storage trick directly in l₂^t [Indyk-Motwani'98]

Next two lectures

- Wednesday: reducing nearest to near neighbor
- Thursday: other algorithms for near neighbor (less space, more query time)
 – Locality Sensitive Hashing