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Definitions 
•  Given: a set P of n points in Rd 
•  Nearest Neighbor: for any query 

q, returns a point p∈P 
minimizing ||p-q|| 

•  r-Near Neighbor: for any query 
q, returns a point p∈P  s.t.  

   ||p-q|| ≤ r (if it exists) 

q 

r 



The case of d=2   
•  Compute Voronoi diagram 
•  Given q, perform point 

location 
•  Performance: 

– Space: O(n) 
– Query time: O(log n) 



High-dimensional near(est) 
neighbor: applications 

•  Machine learning: nearest 
neighbor rule 
•  Find the closest example 

with known class 
•  Copy the class label 

•  Near-duplicate Retrieval 

? 
Dimension=number of pixels 

To be or not to be 
… 

(... , 2, …, 2, … , 1 , …, 1, …) 

(... , 1, …, 4, … , 2 , …, 2, …) 

(... , 6, …, 1, … , 3 , …, 6, …) 

(... , 1, …, 3, … , 7 , …, 5, …) 

Dimension=number of words 



The case of d>2 

•  Voronoi diagram has size n[d/2] 
–  [Dobkin-Lipton’78]: n2^(d+1) space, f(d) log n  
–  [Clarkson’88]: n[d/2](1+ε) space, f(d) log n time 
–  [Meiser’93]: nO(d) space, (d+ log n)O(1) time 

•  We can also perform a linear scan: O(dn) 
time 

•  Or parametrize by intrinsic dimension 
•  In practice: 

– kd-trees  work “well” in “low-medium” 
dimensions 



Approximate Nearest Neighbor 
•  c-Approximate Nearest 

Neighbor: build data structure 
which, for any query q 
–  returns  p’∈P,  ||p-q|| ≤ cr,  
– where r is the distance to the 

nearest neighbor of  q  
q 

r 

cr 



Approximate Near Neighbor 
•  c-Approximate r-Near Neighbor: build data 

structure which, for any query q:  
–  If there is a point p∈P, ||p-q|| ≤ r 
–  it returns  p’∈P,  ||p-q|| ≤ cr 

•  Most algorithms randomized: 
–  For each query q, the probability (over the 

randomness used to construct the data structure) 
is at least 90% 

•  Reductions and variants: 
–  c-Approx Nearest Neighbor reduces to c-Approx 

Near Neighbor  (Wednesday) 
–  One can enumerate all approx near neighbors 
     → solving exact near neighbor via filtering 
–  Other apps: c-approximate Minimum Spanning 

Tree, clustering, etc. 

q 

r 

cr 



  Approximate algorithms 
•  Space/time exponential in d [Arya-Mount’93],

[Clarkson’94], [Arya-Mount-Netanyahu-Silverman-Wu’98] 
[Kleinberg’97], [Har-Peled’02], …. 

•  Space/time polynomial in d [Indyk-Motwani’98], 
[Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98], [Gionis-Indyk-
Motwani’99], [Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04], 
[Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]… 

Space Time Comment Norm Ref 

dn+nO(1/ε2) d * logn /ε2  

(or 1) 

c=1+ ε Hamm, l2 [KOR’98, IM’98] 

nΩ(1/ε2)                   O(1) [AIP’06] 

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c Hamm, l2 [IM’98], [GIM’98],[Cha’02] 

ρ(c)<1/c l2 [DIIM’04] 

dn * logs dnσ(c) σ(c)=O(log c/c) Hamm, l2 [Ind’01] 

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c2 + o(1) l2 [AI’06] 

σ(c)=O(1/c) l2 [Pan’06] 



nO(1/ε2) space, d * logn /ε2  query time,   

Hamming distance 



Hamming distance sketches 
[Kushilevitz-Ostrovsky-Rabani’98] 

•  Let x,y in {0,1}d , r>1, ε>0, 0<δ<1 
•  Want: sk: {0,1}d -> {0,1}t such that 
   given sk(x), sk(y): 

–  If H(x,y)> (1+ε)r, we report YES 
–  If H(x,y)< (1-ε)r,  we report NO 

     with probability >1-δ 
•  In fact, we test if H(sk(x),sk(y))>R for 

some R 
•  How low t can we get ? 
•  Will see t=O(log(1/δ)/ε2)  suffices 



Sketch 
•  Setup: 

–  Choose a random set S of coordinates 
•  For each i, we have Pr[i∈S]=1/r 

–  Choose a random vector u in {0,1}d 
•  Sketch: SumS(x) = Σi∈S xi ui mod 2 
•  Estimation algorithm: 

–  B= SumS(x) + SumS(y) mod 2 
–  YES, if B=1 
–  NO, if B=0 

•  Analysis: 
–  We have B=SumS(z) where z=x XOR y 
–  Let D=||z||0 
–  Pr[B=1]  = ½ * Pr[zS≠0]  

   = ½ * [1-Pr[zS=0]] 
                 = ½ * [1-(1-1/r)D ] 
–  For r large enough: (1-1/r)D ≈e-D/r, so  

•  If D> (1+ε)r, then  e-(1+ε) < 1/e -  ε/3 and Pr>1/2(1-1/e +  ε/3)  
•  If D< (1-ε)r,   then e-( 1-ε)  > 1/e + ε/3 and Pr<1/2(1-1/e -  ε/3) 

–  Using O(log(1/δ)/ε2)  sums does the job (Chernoff bound) 



Sketch is good 

•  Data structure (for P, r>1, ε>0)  
– Compute sk: {0,1}d -> {0,1}t , t=O(log(1/δ)/ε2) 

for δ=1/nO(1) 

• Sketch works (with high probability) for fixed 
query q and all points p in P 

– Exhaustive storage trick: 
• Compute   

S={u in {0,1}t: H(u,p)>R for some p in P} 
• Store S (space: 2t=nO(1/ε^2) ) 

•  Query: check whether sk(q) in S 



Beyond {0,1}d : l1 norm  
•  l1 norm over {0…M}d 

–  Embed into Hamming space with dimension dM [Linial-
London-Rabinovich’94] 

•  Compute 
Unary((x1, . . . , xd)) = Unary(x1) . . . Unary(xd) 

•  We have 
||p-q||1 = H( Unary(p), Unary(q) ) 

–  Need to deal with large values of M 
•  l1 norm over [0…s]d 

–  Round each coordinate to the nearest multiple of  r ε/d  
•  Introduces additive error of r ε , or multiplicative (1+ε) factor 

–  Now we have M=s* d/(r ε) 



Beyond {0,1}d : l1 norm ctd 

•  l1 norm over Rd 

– Partition Rd  using a randomly shifted grid of side 
length s=10r [Bern’93] 

– For any two points p and q, the probability that p 
and q fall into different grid cells is at most 

|p1-q1|/s + |p2-q2|/s+..+|pd-qd|/s= ||p-q||1 /s 
•  If ||p-q||1 ≤ r, then probability is at most 10% 

– Build a separate data structure for each grid cell 
– To answer a query q, use the data structure for 

the cell containing q 



Beyond {0,1}d : l2 norm  

•  Embed l2d into l1t with t=O(d/ε2) with 
distortion 1+ε  [Figiel-Lindenstrauss-Milman’76] 

– Use random projections 
•  Or, use Johnson-Lindenstrauss lemma to 

reduce the dimension to t=O(log n/ε2) and 
apply exhaustive storage trick directly in l2t   
[Indyk-Motwani’98] 



Next two lectures 

•  Wednesday: reducing nearest to near 
neighbor 

•  Thursday: other algorithms for near 
neighbor (less space, more query time) 
– Locality Sensitive Hashing 


